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Executive Summary

Findings

This report contains the functional analysis done by the University of Surrey
(UoS) for swIDch, regarding one of their systems that generates a timed au-
thentication code designed to identify and authenticate users registered with
said system. The generated token is often referred to as an “OTAC” (one time
authentication code).

The University of Surrey analysed swIDch’s generic description of their
OTAC system as well as two specific instantiations for two concrete use cases:
the “epheremal” payment card and the drone use case.

The analysis pertained to whether the OTAC system and its use case specific
instantiations ]functionally satisfy the following high-level requirements:

– Req 1: Identification. The OTAC system provides identification and
authentication of a given user.

– Req 2: “Off-line” (Client) Operation. The OTAC system operates
off-line once commissioned, i.e., no server/backend interaction prior to the
identification & authentication process is required.

– Req 3: Code-token Uniqueness. A given generated OTAC token is
unique per user, i.e., given an OTAC token generated for user A, it must
be impossible for the system to mistake it for an OTAC token generated
by user B.

In our analysis, we demonstrate that the generic construction of the OTAC
algorithm satisfies the stated requirements within the bounds of the specified
system parameters. In fact,

• the generic OTAC algorithm provides identification of a given users: i.e.,
the ability of a generic impersonator, as presented, to produce a valid
OTAC token for a given user can be made as small as required.

• the system can operate well in a client “off-line” fashion, provided the time-
synchronisation between the client application and the server application
is maintained.
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• The uniqueness of the OTAC values for each user is guaranteed by its
construction.

Furthermore, we also demonstrate that the specific use case instantiations of
the OTAC system for the “ephemeral” payment card use case and the drone use
case, respectively, also meet these requirements within their specified system
parameters.
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Chapter 1

Introduction
1.1 Project Overview

This report has been prepared by the University of Surrey (UoS) in response
to a request by swIDch to evaluate and analyse their One-Time Authentication
Code (OTAC) algorithm/system. The main focus of this report is the analysis
of the generic algorithm/system and whether it functionally satisfies a given
set of requirements. Moreover, the report also looks at two specific use cases
of the OTAC algorithm/system; these use cases are only looked at in terms of
the adaptations they make to the generic OTAC algorithm and whether these
changes do not hinder the specific requirements analysed for the generic OTAC
algorithm.

1.2 Document Organisation

The report is structured as follows:

• Section 2 contains:

– the description of a generic time-sensitive authentication func-
tionality that the OTAC realises;

– a summative mathematical description of the OTAC specifica-
tion document that UoS received from swIDch; these specifications
are quoted verbatim in Appendix B.

– three functional requirements, Req 1, Req 2, Req 3 of the
OTAC.

– Section 2.4 contains a functional analysis of the OTAC against
the three requirements, stating the parametric/asymptotic cor-
rectness of these requirements, i.e., with which probability, in terms
of the parameters that define the OTAC, do these requirements hold
if the OTAC is implemented and operates correctly.

• Section 3 describes two use cases of the OTAC system and functionally
analyses whether the three main OTAC requirements are maintained by
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these specific use cases, and to what concrete degree, i.e., based on the
specific parameters instantiated for these OTAC use cases, quantitative
(not just asymptotic) measures of correctness are provided.

Appendix B contains the OTAC algorithm/system specification provided to
UoS by swIDch.

Appendix A contains a supplementary refinement of Section 2.4 which looks
beyond a purely functional analysis.
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Chapter 2

OTAC – Overview &
Analysis

The main focus of this section is the description of the generic OTAC algo-
rithm/system, and a functional analysis of it against three given functional
requirements.

2.1 Idealised Functionality of One-Time Authen-
tication Tokens

We first describe the idealised functionality of a “One-Time Authentication To-
ken” (see Figure 2.1). The OTAC algorithm is a specific realisation of this func-
tionality, under specific requirements and guarantees. The three requirements
of the OTAC system are given in Section 2.2

A system realising a “One-Time Authentication Token” would generally
amount to a client application, C, which generates an authentication token/code1

c, and a server application, S, which validates c. The client application C would
need to be registered with the server S via a user ID (UID), u, and generally a
user-specific secret, s. The client application would compute c using a function
f which generally depends on this secret s, the UID u as well as the current time-
interval ti (whose duration is configurable depending on the use case). For each
such time-interval ti, a new computation of c is obtained. This time-sensitive
token is intended to uniquely identify and authenticate the user associated with
the UID u and secret s.

The token c is sent over the network to the server which applies the inverse of
f to c, to retrieve the UID u. It then generally looks up the secret s corresponding
to u in S’s database and, using s, and a number of candidate time-interval values
ti1, · · · , tik for a configurable k, recomputes part of the token to see if it matches

1The terms token and code are used interchangeably in this report.
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the received values. The need to use multiple candidate time-interval values is
due to the possible time de-synchronisation between the client and the server.

If at least one of these checks pass, S will authenticate the user’s credentials
and potentially perform/initiate further actions for the user. These actions may
differ from use case to use case and thus the token c sent over the network may
have additional meta- and/or application-level meaning.

Server S Client C

shared secret s shared secret s
shared UID u shared UID u

token c at time-interval ti

(u, s):=f−1(c, ti′)
c←−−−−−−−−−−−−−−− c=f(u, s, ti)

check consistency of u, s

Figure 2.1: An Idealised Functionality F for One-time Authentication Tokens

Note 1: There are many ways to realise the idealised functionality F , under
different assumptions, using different set-ups, and adhering to different require-
ments, e.g., one can take a set-up where C and S do not use public-key, or one
may require c to be of a specific length, or f to have given properties, etc.

In this vein, the OTAC system realises F and has its own requirements,
set-up and assumptions. We will detail these in the next two sections below.

Most implementations of such functionalities do not actually authenticate a
human presence (biometrically or by their active presence), instead they iden-
tify/authentication a user via/as their credentials s. The OTAC could be aug-
mented to also biometrically authenticate a human user, but this is not in the
scope of our discussions/analyses. As it is commonplace, we simply employ the
word “user” to equate their registered secret s.

2.2 OTAC’s Main Requirements

As we said, different functional requirements can be asked of a concrete system
realising the idealising functionality F depending on that system’s scope and
the specifics of how F is realised.

The OTAC is a system that realises F (in a specific way described in Sec-
tion 2.3) and has a specific set of functional requirements. In this report, we
analyse the following three requirements:

– Req 1: Identification. The system is such that it should not be possible
to impersonate a user, i.e., without knowing the secret s, one2 cannot
generate a valid c for a given u.

2In our analysis, we are considering here a party following the system, even as an insider,
with polynomial computational power but without active attacks onto the network, crypto-
graphy and, specifically, the registration/commissioning part of the system in which the user’s
secret s is transferred onto the client application.
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– Req 2: “Off-line” (Client) Operation. Once the system has been
commissioned (i.e., users/clients are registered with the server), the system
is such that the client application does not require any interaction or
communication with the server/backend, in order to generate the token c
and send it to the server.

– Req 3: Code-token Uniqueness. The function f is such that two
honest users always generate different tokens c, i.e., given a valid token
generated with the OTAC system by user A, it must be impossible that the
OTAC system mistakes this code for a valid code generated in the OTAC
system by/for the user B.

This report analyses whether these three requirements are functionally met
by the OTAC system as detailed in the specifications received by UoS from
swIDch, and presented in Section 2.3.

Note 2: Other types of analyses, e.g., with respect to different threat models
for the network, the hardware and/or software are not considered. However,
some details touching upon these aspects are analysed and included in Ap-
pendix A.

2.3 The OTAC Algorithm

In this section, we describe the specifics of how the OTAC system realises the
idealised functionality F above. This mathematical description is based on the
specification given to UoS by swIDch and found in Appendix B.

Just like the idealised functionality F , the OTAC system consists of a server-
side application S and a client-side application C. The client-side application
can be a mobile phone application or a stand-alone application. The communi-
cation channel between the client C and the server S is assumed to be a public
channel with no extra provision of confidentiality, authentication or integrity.
Note that while the generic case does not specify this, different use cases may
require the transmission channel be encrypted, e.g., the “ephemeral” Payment
card use case discussed in Section 3.1.

We first introduce the OTAC system’s objects and parameters.

2.3.1 OTAC System: Mathematical Objects & Parameters

a. u represent the unique user ID; the bit-length |u| is a parameter of the
system.

This is often taken to be at least 6 decimal digits.

b. s represents the user-specific secret; the bit-length |s| is a parameter of
the system.
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This secret is often assumed to be a pseudorandomly-generated bistring
of 128 bits or longer.

c. ti represents a current time-interval; the duration/length of |ti| is a system
parameter.

In practice, |ti| can range from a few seconds to potentially days.

d. B1, B2 are system parameters defining different classes of tokens c; these
B1 and B2 are mathematical bases and this defines the way in which the
token c is represented, i.e., which characters appear in c.

Possible values for a basis B include

• B = 10, in which case the characters appearing inside the token c
are decimal digits [0, · · · , 9].

• B = 36, in which case the characters appearing inside the token c
are decimal digits and upper letters [0, · · · , 9, A, · · · , Z].

• B = 62, in which case the characters appearing inside the code c are
decimal digits, upper & lower case letters – [0, · · · , 9, A, · · · , Z, a, · · · , z].

e. D1, D2 are system parameters that represent the number of characters to
be used in the output.

f. other system parameters are derived from the above: e.g., n1 ≤ BD1
1 , and

n2 = BD2
2 .

In practice, B1, D1 are taken such that n1 >= 106.

After a registration/commissioning process, both the client-side and the
server-side applications have access to the user ID u and the user-specific secret
s. Note that the allocation of the user ID, the secure generation of the secret s
as well as the commissioning of these to the client and server applications are
out of scope of this analysis. Similarly, the key management, i.e., the secure
storage and protection, of the secret s on the server and client applications is
also not further analysed but assumed to be managed by appropriate hardware
or software available on both client and server.

2.3.2 OTAC System: Code-computing Function f

Now, we describe how the code-computing function f given in the idealised
functionality F is realised in the case of the OTAC.

Sub-procedures of OTAC’s Code-computing Function f

• TOTP (s, ti). This is a Time-base One-Time Password (TOTP) algorithm
(e.g., RFC 6238 [1]), based on a proven cryptographically secure hash
function. Its output range is [0, (n1 − 1)], where n1 ≤ BD

1 1.

The outputs of TOTP are assumed to be uniformly and independently
distributed strings over the interval [0, (n1− 1)]; this is achieved provided
TOTP operates equivalently to the construction described in [1].
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• Merge1(val1, val2). The current description of this function computes
val2 + val1 (mod n1), where [0, (n1− 1)] is the range of the TOTP func-
tion, and therefore a system parameter for Merge1 too.

– Please see the paragraph “OTAC’s Code-computing Function f” for de-
tails on what arguments val1 and val2 are.

• Merge2(val′1, val
′
2). This function concatenates val′2 with val′1.

– Please see the paragraph “OTAC’s Code-computing Function f” for de-
tails on what arguments val′1 and val′2 are.

• Spacingi(xi, Di, Bi) for i ∈ {1, 2}. This function transforms xi into a
string of length Di using characters chosen from the set associated with
the base Bi. So, Di and Bi are system parameters.

– Please see the paragraph “OTAC’s Code-computing Function f” for de-
tails on what argument x is.

– It is clear that in order to represent all possible values of x, it must be
that x ∈ [0, (BDi

i − 1)].

– For the server-side decoding part of the OTAC to work, the projection
of the Spacing2 function on the domain of x2 must be invertible.

• Distancing(val′′1 , val
′′
2 ). This function simply adds the two values, i.e., it

computes val′′1 + val′′2 where + is ordinary addition.

– Please see the paragraph “OTAC’s Code-computing Function f” for de-
tails on what arguments val′′1 and val′′2 are.

– For the server-side decoding part of the OTAC to work, the projection
of the Distance function on the domain of val′′1 must be invertible.

We will now summarise the actual calculation of the OTAC token, i.e., func-
tion f in Figure 2.1, as per the specification document found in Appendix B.

OTAC’s Code-computing Function f

– Step 1:

(a) hashval:= TOTP (s, ti) ∈ [0, (n1−1)] this computes the TOTP using
the shared secret s and the current time interval ti and returns a value
in the interval [0, (n1 − 1)]. Note that this is the most important
function of the OTAC algorithm and the value of n1 represents the
number of distinct OTAC values that can be generated per user.

(b) hash′val = Merge1(hashval, ti) = hashval + ti (mod n1).

Note that using modular arithmetic ensures hash′val ∈ [0, (n1 − 1)]:
i.e., it transforms a bitstring hashval output by TOTP (s, ti) into an
integer smaller than n1.

11



(c) C1 = Spacing1(hash′val, D1, B1). This converts the hash′val into a
prescribed format of length D1 using the characters in base B1.

For example, if D1 = 6 and B1 = 10 and hash′val = 123, then one
possible implementation of Spacing1 could output C1 = 000123, i.e.,
6 characters in base 10 encoding 123.

– Step 2:

(a) dvalue = Distancing(u,C1) = u + C1. This is normal addition in
some basis.

So, prior to this standard addition, both u and C1 will be converted
to a common base.

(b) C2 = Spacing2(dvalue,D2, B2). This converts dvalue into a pre-
scribed format of length D2 using the characters in B2.

– Step 3:

(a) OTAC = Merge2(C1, C2) = C2||C1. The final step in the algorithm
is the concatenation of the two value computed in Step 1 and Step 2
to produce the overall OTAC value.

OTAC’s Server-side Decoding/Authentication The value, OTAC, com-
puted in Step 3, is then sent to the server where the inverse operations are
carried out3:

– Step 4: extract

(a) extract C1 and C2 from OTAC = C2||C1. This simply involves undo-
ing the concatenation.

– Step 5: retrieve u

(a) compute dvalue by applying the inverse of Spacing2 to C2, i.e.,
Spacing−12 (C2, D1, B2) = dvalue, which is possible as Spacing2 is
invertible.

(b) recover u by applying Distance−1(dvalue, C1)=dvalue− C1=u.

It is assumed that prior to the subtraction both dvalue and C1 will
be converted to the common base used previously.

– Step 6: verify using s

(a) having retrieved u, the associated s is retrieved and k4 candidate ti′s
are generated. These ti′s are then used to compute candidate C ′1s as

3We assume that the OTAC value has not been corrupted in transit, i.e., the value sent by
the client is the value received by the server.

4The value of k depends on the length of the chosen time invertal ti, the anticipated
time de-synchronisation between the server and the client applications and the latency of the
network over which the OTAC is sent. It is important to optimise the choice of k to ensure
successful authentication of the client while minimising the number of time intervals to check.
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described in Step 1 above. If C1 = C ′1 for one of the ti′s then the
user u has been successfully identified and authenticated.

Observation with respect to Merge1.

According to the specification provided, the rationale for this function is the
attempt to reduce the likelihood of generating the same hashval at two different
time intervals. However, this is still possible due to the fact that there exist
values to satisfy the following equality:

TOTP (s, ti1) + ti1 = TOTP (s, ti2) + ti2 (mod n1)

Note, however, from a security perspective, there are no issues with gener-
ating the same value for two different time intervals as long as these values are
uniformly distributed over the range of the TOTP function.

Note that this is the case for RFC6238 [1] and as the OTAC TOTP function
is assumed to be functionally equivalent to [1], Merge1 could safely be removed
without impacting the functionality of the OTAC algorithm.

2.4 Functional Analysis of OTAC’s Requirements

We will now look at whether the OTAC algorithm described in Section 2.3 meets
the requirements stated in Section 2.2, from a functional perspective (i.e., when
the system and the environment work correctly, or as expected).

2.4.1 Functional Requirement Req1 : Identification

Recall that Req1 states that it should be impossible for anyone5 to impersonate
a user with UID u, if they do not know the user’s secret s.

The Impersonator’s Capabilities. We assume that a potential impersonator,
Imp, who would attempt to break Req1, knows u – as this can be easily obtained
from an intercepted OTAC value. Furthermore, we assume that all remaining
parameters of the OTAC construction are either known to Imp or can be easily
reverse-engineered from the client application. Consequently, the only unknown
parameter in an attempted illicit construction is the user-specific secret s.

From the description of the OTAC, it is clear that all functions except for
TOTP (s, ti) can be computed by Imp (as they do not depend on secret values
such as s, and as they know the system).

The Impersonator’s Probability of Success. Since the TOTP function is as-
sumed to be based on a cryptographically secure hash function, the values gen-
erated by it will not reveal any information about the secret s (i.e., not to

5In our analysis, we are considering here a party following the system, even as an insider,
with polynomial computational power and without active attacks onto the network, cryptog-
raphy and specifically the registration/commissioning part of the system in which the user’s
secret s is transferred onto the client application.
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a normal impersonator bounded by polynomial computations or information-
theory bounds).

However, it is also clear that an impersonator does not need to know the
secret s to generate well-formed OTAC values for a user u. Obviously, the
impersonator can iterate blindly over the output domain of TOTP , and one of
those values will be valid for a given ti.

If the TOTP used generates outputs uniformly distributed, and crucially
independent of one another (which the TOTP in RFC 6238 [1] does), then the
impersonator cannot even adaptively find an interval ti for which producing the
correct TOTP (s, ti) without knowing s gives him an advantage over another
time-interval tj. Thus, for any time-interval, ti, the impersonator is standing
roughly the same chance of producing illicitly a valid TOTP (s, ti). This is
stated as follows:

Statement 1: If the TOTP used is as per the RFC 6238 [1], for any time-
intervals ti, tj, ti 6= tj , given to an impersonator, Imp, or even chosen by them,

|Pr[Imp produces a valid TOTP | for ti]− Pr[Imp produces a valid TOTP | for tj]| ≤ ε1,

where ε1 is negligibly small6.

Given statement 1, and the fact that there are a fixed number of n values for
each TOTP (·, ti) spread uniformly, we can then prove the following statement:

Statement 2: If the TOTP used generates outputs uniformly distributed
over n distinct values, then Pr[Imp produces a valid TOTP|for any ti] = 1

n+ε2,
where ε2 is negligibly small.

On the server-side, the server will compute a number of acceptable OTAC
codes (corresponding to each ti), in order to ensure that small a time drift will
not prevent legitimate clients from authenticating. Let k be the number of
server-acceptable/server-checked codes for a given ti.

Thus if there are k candidate OTAC tokens being generated on the server,
then the likelihood of the impersonator submitting a correct one for a given
time period is k

n .
Putting it all together, formally, we can prove the following statement:

Final Statement: If the TOTP used in the OTAC generates outputs uni-
formly distributed and independent of one another (as per e.g., the TOTP in
the RFC 6238 [1]), then the probability of an impersonator as described above
to produce a valid TOTP for a user without knowing their secret, thus break-
ing Req1, is k

n + ε3, where n is the size of the domain of the TOTP and k is

6All the ε values in this subsection are negligbly small, and in practice they can safely be
considered to be 0. They refer to two aspects: (a) the TOTP in REF 6238 or other TOTPs
used are computationally secure function, i.e., there is negligibly-small computational differ-
ence from one instance to another; (b) there are choices made in any OTAC’s instantiation
around and alongside the TOTP instance dependent on the system’s parameters; one such set
of choices versus another also entails negligibly-small computational difference.
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the number of server-checked codes for one client-generated code, and ε3 is a
negligible amount.

Take-away Message: Provided that k/n above is sufficiently small (e.g., <
1

106 ) and that multiple incorrect submission attempts will result in the account
being locked, then the requirement that an impersonator cannot forge a user’s
OTAC without knowing the user’s secret s. Thus, in practice, under normal
computational powers, and if the TOTP inside the OTAC is as per the RFC
6238 [1], then Req1 is met.

2.4.2 Functional Requirement Req2 : “Off-line” (Client)
Operation

This requirement states that once the application has been commissioned and
the user’s details have been registered on both client and server side, the client
OTAC application operates autonomous of the server side.

This requirement is clearly met as there is no communication between the
server and the client application prior to the calculation of the OTAC value.

However, note that the application can only function in this “off-line” mode
considering the three aspects below:

a. the duration/length |ti| of the time interval ti;

b. there is latency l onto the network;

c. the synchronisation of the computer-clock/time on the client side and
server side applications7.

Let |ti| be the duration/length of the time interval ti. Let τ be the commu-
nication time of any client-issued code (including in the network latency l), i.e.,
the time to get from the client to the server.
Let δ be the difference in time synchronisation between the client and the server’s
computer clocks.
Let k be the number of trials a server makes in checking a given OTAC, for a
time interval.
Let optk be a function which computes the value k given δ, τ , |ti| and n1 (the
size of the range of the TOTP), i.e., k=optk(n1, δ, τ, |ti|).

Final Statement. If the TOTP used in the OTAC uses client-server resyn-
chronisation techniques when needed as per e.g., the TOTP in the RFC 6238 [1],
then, for any given n, δ, τ , |ti| as per the above, there exists an optimising func-
tion optk that selects k=optk(n, δ, τ, |ti|) such that the server will accept a client’s
offline-produced OTAC with a probability 1− k

n which is negligible close to 1, and
so the requirement Req2 of the OTAC is met.

7Addressing any potential de-synchronisation of the time between server and client appli-
cation is out-of-scope of this analysis and it assumed that mechanisms are in place to prevent
this.
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Note 3: Such fine-tuning of server-side verification, in order to discrimi-
nate between honest/acceptable/legitimate behaviour (i.e., correctness) and il-
licit/rogue/fraudulent behaviour (i.e., security) is a known problem in computer
science [2], which has practical solutions within given applications.Therefore, the
OTAC’s server-side application, to achieve good attainment of Req2, would need
to be fine-tuned per use-case: with one acceptance threshold k for payments and
another for drones, etc.

Take-away Message, In practice, this means that the server should be fine-
tunable (with respect to the number of codes to check per given time interval,
the TOTP range, the given application, e.g., network latency) within reliable
margins, such that, under normal network conditions for the usage, a client’s
offline-produced OTAC is almost always accepted, and hence, with such fine-
tuning in place, the requirement Req2 of the OTAC is always met.

2.4.3 Functional Requirement Req3 : Code-token Unique-
ness

Recall that this requirement informally states that two honest users always
generate different codes c, i.e., given an OTAC token generated by user A, the
server will never mistake it for a valid OTAC token generated by/for user B.

The only part of the OTAC value containing the user’s UID, u, is C2. We can
prove that the OTAC tokens will always be different. The proof is as follows.

Consider two 2 different users with UIDs u1 and u2, u1 6= u2. Assume,
by contradiction, that the users’ OTAC values were the same, i.e., the two
C2||C1 values generated are the same for both users. More formally, we would
have that Cu1

2 ||C
u1
1 =Cu2

2 ||C
u1
1 . From this we would have two aspects holding

simultaneously:

Cu1
1 = Cu2

1 (2.1)

Cu1
2 = Cu2

2 . (2.2)

Let’s take equation (2.2): Cu1
2 =Cu2

2 . From this, we would have, by the result
of theDistancing function in Step 2 (c.f., Section 2.3.1), that u1+Cu1

1 =u2+Cu2
1 .

Since equation (2.1) must also hold, then8 it follows that we must have: u1=u2.
But, this is a contradiction with the working hypothesis. So, the the assumption
in the proof is false: two codes cannot be the same for two different users. This
concludes the proof.

Final Statement. If the Distancing function projected on the user-domain is
injective and the rest of the OTAC algorithm produces C1 and C2 as per the
specifications in Section 2.3.1, then the OTAC produces unique codes per user,
thus meeting functional requirement Req3.

Take-away Message: Provided that the construction of C2 in the OTAC (i.e.,
the part of the code that contains the UID u ) combines u with C1 in a way that
remains user-specific (e.g., the Distancing algorithm does not truncate results

8Note that this assumes the addition of Distancing to be proper addition and not modular
addition.
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using modular arithmetic), then OTAC tokens generated per user are indeed
unique to that user. In practice, this can be achieved easily.

Note 4. All this analysis disregards the threat of replay attacks; in this threat,
an old client-generated code would be resent to the server and this code would
be accepted by the latter. All applications not just the OTAC, which like the
OTAC require “off-line” client operation (i.e., no bidirectional active interactions
between the client and the server) are prone to replays to some extent. More
specifically for the OTAC system, if the “off-line” operation is maintained (as
it is a main functional requirement here) and the current design of the OTAC-
production remains unchanged (e.g., one does not add further time-identification
details such timestamps/counters or mechanisms such as public-key encryption),
then one aspect that can improve OTAC’s replay-protection is a server-side ad-
dition, as follows. The server could check that a code received for a given user
and acceptable at the current point, has not been accepted before against the
currently server-acceptable intervals.

2.5 Summary of Analysis

We have shown that the generic construction of the OTAC algorithm satisfies
the stated requirements within the bounds of the specified system parameters.
In other words:

• the generic OTAC algorithm provides identification of a given users: i.e.,
the ability of a generic impersonator, as presented, to produce a valid
OTAC token for a given user can be made as small as required, by choosing
cryptographically secure TOTPs and fine-tuning the system parameters.
A corollary of this is that an accidentally mistyped OTAC token might
also be accepted with the same negligible probability.

• the system can operate well in a client “off-line” fashion, provided the time-
synchronisation between the client application and the server application is
maintained, and the server is well fine-tuned with respect to false rejection
vs. abuse, in function of the system’s parameters (e.g., latency, time-
interval).

• The uniqueness of the OTAC values for each user is guaranteed by its con-
struction, if the C2-creating function is user-specific (i.e., mathematically,
it is injective over the user-ids).

All of these can be relatively easily and reliably attained in practice.
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Chapter 3

OTAC’s Use Cases & Their
Functional Analysis

In this section, we look at two specific instantiations of the OTAC algorithm
described in Section 2.3; these are two concrete use cases. We first describe
the motivation for the use case followed by providing an analysis of the main
differences between the generic algorithm and its adaptation for the use case
in question. In particular, we provide details of the constraints imposed on the
choice of system parameters by the the use case. We then analyse whether each
use case specific instantiation of the OTAC algorithm still meets the three main
requirements stated in Section 2.2.

3.1 Use Case: “Ephemeral” Payment Cards

3.1.1 Use Case Description

The payment card use case can be summarised as follows: a user, identified
via the identifier UID, registers her real payment card number with the swIDch
server application which provisions the swIDch client application with a fresh
“serial number” associated to said payment card. The swIDch server application
also stores the user’s card serial number; this card serial number is the OTAC-
system shared secret s (see Fig. 2.1).

For the purpose of this use case, the swIDch algorithm as given in the spec-
ifications (see Appendix B) and presented herein in Section 2.3 is altered, such
that the OTAC code-token c generated is a number that equates to a valid pay-
ment card number together with its expiry date and Card Verification Value
(CVV) number. The purpose is the user enter (parts of) this code into an
e-commerce website to pay for goods.

When presented to the payment gateway, the payment card number will need
to be passed to the swIDch server application for decoding so that the user’s id,
UID, and associated real/secret payment card number (and its details) can be
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retrieved from the swIDch database to pay for the transaction.
The advantage of the solution is that e-commerce providers do not need to

change their infrastructure1 to support the swIDch solution as it produces valid
payment card numbers. Moreover, due to the time-limited nature of the OTAC
token, the temporary payment card number will expire in e.g., 90 seconds and,
hence, even if stolen in transit, it is of limited use to any attacker. Finally, the
swIDch client application does not hold any real payment card details, either.

3.1.2 Adaptations of the Generic OTAC Algorithm

The following changes have been determined by analysing the provided spec-
ification in Appendix B. To describe these changes, we will mainly use our
description in Section 2.3.

The main constraint2 in this use case is the format of the final OTAC token
which needs to match the following format:

Figure 3.1: Payment Card Format

As a consequence, the main change in the credit-card OTAC is the con-
struction of the final OTAC token which requires it to be a valid payment card
number.

This imposes the following restrictions:

a. The payment card number consists of the Bank Id Number (BIN) which
are the first 6 decimal digits and shown in red in Figure 3.1. The BIN is
static and cannot be changed.

b. The next 9 digits denote the account ID (“789876543” in Figure 3.1) and
can be freely chosen resulting in 109 possible values.

c. The final digit (“2” in Figure 3.1) is a check digit which is computed using
the Luhn algorithm [3] and hence predetermined and cannot be chosen
freely.

1This is so, provided swIDch can act as e.g., a tokenisation service within the payment
networks.

2Note that this equates to some of the parameters of the generic OTAC now being deter-
mined by a real-life use case; therefore, if nothing else changes, all probability thresholds in
meeting the functional requirements given are dictated by usability/functional constraints.
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d. The “Valid” and “Exp” dates can again be chosen freely provided the
chosen dates are sensible, i.e., they are within a reasonable time period
and the “Exp” date is in the future of the current date while the “Valid”
date is in the past. The swIDch algorithm restricts the ‘Valid” and “Exp”
dates to a five year period resulting in 60 possible values for these fields.

e. The CVV field is a 3 digit number which can be freely chosen providing
1000 possible values.

Functionally-imposed Restrictions: Number of Possible Codes. As a result

of the above, there is a total of roughly 109 ∗ 60 ∗ 103 = 6 ∗ 1013 possible
“ephemeral” payment card numbers that can be constructed and that this use
case OTAC can produce. So, formally, we have that n = 6 ∗ 1013.

New, Freely Made Design Choices. The main design decision for the pay-
ment card OTAC implementation is the number of customers that need to
be supported. This is an important choice, since it determines how many
codes/card-numbers per user, the system can provide. i.e., if there were to
be 107 customers then the algorithm would allow for up to 6 ∗ 106 possible
“ephemeral” payment cards to be associated with each user.

So, it can be clearly seen that there is a clear security trade-off between
the number of supported users and the number of “ephemeral” payment cards
available per user.

Changes/choice of System Parameters

Let us re-fix the notation/details for the payment card use case. In this case,
the construction of the OTAC algorithm uses the following settings:

• u represents the account ID, u ∈ [0, 10l] where 10l is the number of cus-
tomers to be supported;

• s represents a user-specific secret which is completely independent on the
user’s real payment card details;

• ti represents the current time-interval;

• D1 = 16− l;D2 = l are the number of characters to be used in the output
format;

• B1 = B2 = 10 as all outputs are going to be digits;

• TOTP (s, ti) ∈ [0, 6∗1013−l) is as before but its output range is determined
by the use case;

• Merge1 does not change;

• Merge2 is changed toGenerateCardNumber(BIN,C1, C2) where BIN is
a fixed 6 digit number identifying the bank and C1 and C2 are the outputs
of Step 1 and Step 2 of the OTAC algorithm as described in Section 2.3;
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• Spacingi(val,Di, Bi) for i ∈ [1, 2] do not change

• Distancing(val1, val2) has changed. It is uses hash′val computed in Step 1(b)
of the generic algorithm instead of C1.

The only two essential changes are the computation of dvalue and the re-
placement of Merge2 by GenerateCardNumber(BIN,C1, C2).

Firstly, the computation of dvalue uses the numeric value of hash′val before
its transformation into C1 to ensure that the resulting sum is not overflowing
the range of the valid account numbers. Note that this also means that the
maximum account number, umax, that can be allocated is chosen such that
umax + 6 ∗ 1013−l < 10l in order to avoid a possible overflow.

Secondly, GenerateCardNumber simply constructs a valid card number
given the outputs C1 from Step 1 and C2 from Step 2 of the algorithm. The
format of C1 and C2 are such that they represent the relevant 16 digts that can
be freely chosen as discussed Section 3.1.2 with the constraint that the range of
the “Valid” and “Exp” digits are valid and are sensible. Consequently, the only
additional value that needs to be computed is the checksum digit.

We will now analyse these changes’ impact on the requirements specified in
Section 2.2.

3.1.3 Functional Analysis of OTACs Payment use case

Functional Requirement Req1 : Identification

This requirement is still as before: without knowing a serial-number register for
a given user, an impersonator should not be able to produce a valid “ephemeral”
card number as an OTAC token for them.

The question then is whether the only two changes to the generic algorithm
give the impersonator an advantage. The identifying part of the OTAC is C2 and
the hard-to-reproduce code (as discussed in Section 2.4.1) is C1, and specifically
the TOTP inside C1.

In this transformation, the Spacing1 function in the generic OTAC is replaced
with the identity function, but original functionality of the Spacing1 function
is moved to this use case’s GenerateCardNumber function. So, overall no
functionality is changed/lost between the generic OTAC and payment-centred
OTAC. Aside of this, we can see that the payment-OTAC algorithm is identical
in its construction of C1 and C2 as the generic OTAC algorithm. The final step
of the generic algorithm is the concatenation of C1 and C2, which is replaced
by a concatenation of a BIN with C2 and C1 and the calculation of a check
digit to form a valid payment card number. So the only difference here is some
additional digits surrounding C1 and C2 but these do not change the purpose
and content of C1, C2.

So, all the changes between the generic OTAC and payment-centred OTAC
bring no functional differences, and are just about specifying specific parameters.
Thus, we can recast the statement with respect to requirement Req1 from the
generic OTAC to this use case as follows.

21



Final Statement. In the payment OTAC, an impersonator will have a prob-
ability practically close to k

6∗1013−l to impersonate a valid user without knowing
their registration secret, where k is the number of server-checked codes for one
client-generated code.

Consequently, we explained that the payment-based instantiation of the
OTAC algorithm for payment cards is straightforward instantiation of the generic
algorithm and hence satisfies this requirement Req1 within its parameters.

Functional Requirement Req2 : “Off-line” (Client) Operation

There is no change in the payment-centred instantiation of the OTAC algorithm
that can affect this requirement in a sense not already discussed in Section 2.4.2.
For this requirement to be attained, fine-tuning of k – the number of server-
checked codes for one client-generated code, needs to occur in-keeping with
this use case (e.g., measurements of the quality of the connection of the client
application can be envisaged, etc.). This is all practically attainable.

Functional Requirement Req3 : Code-token Uniqueness

There is no change in the payment-centred instantiation of the OTAC algorithm
that can affect this requirement in a sense not already discussed in Section 2.4.3.

Summary of the “Ephemeral” Payment use case Analysis

In this section, the use case for “ephemeral” payment cards has been presented
and it was shown that the adaptation of the generic OTAC algorithm to this use
case preserves the functional requirements stated in Section 2.2.

3.2 Use Case: Drones

This use case is the one derived from the algorithm description in Appendix B.

3.2.1 Use Case Description

Many drones are limited in their computational processing power and do not use
encryption to secure the communication channel between the drone controller
and the drone. As the drone commands are static, there is a real risk that an
attacker can hijack a drone by simply sending appropriate drone commands to
a drone within her range.

The proposed solution is to use the OTAC algorithm to encode the available
drone commands together with a short time interval ti to ensure that the thus-
obfuscated drone commands have a short validity period and, most importantly,
an attacker will not be able to send valid commands in a given time interval
(unless the attacker replays an already just-sent value), i.e., property Req1 of
the OTAC is a crux requirement of the drone use case.
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Functionally-imposed Restrictions: Number of Codes Sent per Second. More-
over, the solution provided here, needs to meet the following additional require-
ment:
– to be able to transmit a minimum of 20 commands per second.

Consequences of Functionally-imposed Restrictions. This aforementioned re-
striction in turn constraints of the length of the OTAC values that can be sent.

Moreover, even if the requirements Req1, Req2, and Req3, hold (as we will
show below), this aforementioned restriction increases the threat around un-
encrypted channels and replay attacks (see Note 4 in Section 2.4). Yet, recall
that this is not a problem specific only to this use case: in the generic case
of the OTAC as well as in any systems with “offline” client communication
and no encryption on the channel not just the OTAC, there is little replay
protection (see, again, Note 4). However, in this use case, the extra constraint
of sending a minimum of 20 commands per second means that an observer can
potentially learn 1000 coded-commands within a 50 second window. Depending
on the frequency with which these commands are sent and the usefulness of the
commands being transmitted, an attacker might thus be able to obtain a useful
set of commands in a very short period of time.

3.2.2 Adaptations of the Generic OTAC Algorithm

For this use case, the role of the OTAC algorithm changes from being used for
the authentication and authorisation of a single user to a dynamic encoding
system for a set of commands.

Using the notation introduced in Section 2.3, the idea behind this is as
follows:

• A drone’s m ≤ 1000 commands are mapped to 1001, 1002, · · · , (1000+m);

• Each of these numbers correspond to a UID, ui;

• For each ui, there exists a corresponding secret si;

• The client, in this case, is the drone controller and it is issued with a set
of tuples T = {(u1, s1), (u2, s2), · · · , (um, sm)} representing the mapping
of the command code ui to its corresponding secret si;

• The server, in this case the drone, is issued with the same set T .

With these assumptions in place, the generic OTAC algorithm is applied
to issue a command, say ux for some x ∈ [0, · · · ,m], to a drone, using the
corresponding sx, the time interval ti and system specific parameters dependent
on the available bandwidth of the channel between the controller and the drone.

Working Assumption. In the next analysis, we will only consider the impli-
cations of a single controller paired with a single drone. We thus assume that
there is a one-to-one mapping between a controller and a drone. Moreover, we
assume that while the set of commands (u1, · · · , um) to control a drone can be
identical in terms of their numerical values between drones, the associated set
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of secrets (s1, · · · , sm) are unique for each drone and that |{s1, · · · , sm}| = m,
i.e., all the sx are distinct.

3.2.3 Functional Analysis of OTACs Drone use case

In order to quantitatively analysis this use case, we will look at an actual in-
stantiation of the OTAC algorithm for this use case (described in Appendix B)
which deployed the following values:

• D1 = D2 = 4: the output size for the results of Step 1 and Step 2 of the
OTAC algorithm is limited by the available bandwidth of the drone link.

• B1 = B2 = 36, i.e., only capital letters and digits are allowed, however
this means that up to 364 = 1, 679, 616 different values are available.

Note that in order to avoid an overflow as a result of the Distancing function
in Step 2 of the generic algorithm, the output of Step 1, needs to limited to
364 − (1000 +m), where m is the number of drone commands.

Functional Requirement Req1 : Identification

In the context of this use case, this property is now interpreted to mean the
correct identification of encoding for the command ux, whichs was sent in a
given time interval ti.

This holds trivially, following from the analysis of the generic algorithm and
the lack of variation in this use case instantiation.

Functional Requirement Req2 : “Off-line” (Client) Operation

We assume that the drone and controller are enrolled beforehand with the map-
ping of the commands ux to their corresponding secret sx.

Once thus commissioned, the “off-line” operation property for the drone
use case holds as the instantiation of the OTAC algorithm is just a concrete
implementation of the generic version which meets this requirement.

Functional Requirement Req3 : Code-token Uniqueness

Since the instantiation of the OTAC algorithm in the drone use case is a concrete
implementation of the generic version, it, too, meets this property.

Summary of the Drone use case Analysis

Considering, each command ux individually, the OTAC algorithm for the drone
use case satisfies all three requirements stated in Section 2.2.
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Appendix A

Executive Security Analysis

In this appendix, we present a few notes on OTAC-related aspects, generally
pertaining to security, which have not been covered in the main body of the
document.

On Security Analysis vs Functional Correctness. Firstly, we note once
again that the analysis in the main body of the document was carried out from
the perspective of functional correctness and it is not a full security analysis.
This is particularly true of requirements Req2 and Req3. For requirement Req1
we only considered a very specific and weak threat pertaining to impersonation.
Namely, we did not differentiate between the cases of the attacker being an
insider or an outsider, between whether she can or cannot corrupt client de-
vices nor in which way she would choose the user to impersonate versus being
asked to impersonate a given user. We did not quantify the attacker’s success
probabilities over the number of queries made to the system (of which type
these queries would be, or at which frequency – given that the system has an
acceptance window per code), etc.

On the Registration Process. We did not include the Registration Pro-
cess in our analysis, but we stress that for the analysis to have positive results
on the requirements holding, it is imperative that the users’ secrets be gener-
ated pseudorandomly such that they uniformly distributed in their domain and
independent of one another. In short, if this does not happen, the necessary
conditions on the TOTP(’s outputs) do not hold and the requirements of the
OTAC would not be met.

On Specific Constructions/Design of the OTAC: Security & Usability.
As we said before, the generic OTAC implementing the ideal functionality F in
Section 2.1 could be replaced by other realisation of F , which still attain Req1,
Req2, Req3. One such realisation is to employ public-key encryption and use the
public key of the server to encrypt whatever data (identifiers, times) to be sent.
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The advantage of this realisation of F is that provable security follows almost
by construction, as does functional correctness of the requirements Req1, Req2,
Req3. However, with the OTAC, what stops the designer from doing the above
(i.e., just sending an encrypted message) is the formatting and length constraints
imposed by the use cases: i.e., formatting the OTAC as a payment-card number
or fitting within eight characters to encode drone commands. Nevertheless, for
the payment-card use case, we note the following: In this day and age, all “one-
time” or “long-term” payment-card numbers will be sent over an encrypted
channel, like HTTPS. So, the worry of obfuscating the user-id in the OTAC
becomes once again secondary. In fact, all that is needed is the formatting into
an “ephemeral” credit-card number, which could be attain in the way the OTAC
algorithm operates or others.

In this vein, a comparison with other services (e.g., Revolut, Curve), as well
as tokenisation services would be of interest from a security perspective.

Finally, depending on how swIDch is embedded or not into the payment
networks (i.e., swIDch sells this solution to a bank or swIDch remains a third
party), the identification of the customer in/via the OTAC per se may not be
always needed, as that information in the payment system (in each payment)
is provided by various other sources (e.g., the application cryptogram – AC,
issued with each payment received by the issuing bank, etc.). In this case, the
aforesaid point on just using the OTAC for formatting versus having a user-
encoding OTAC stands further.

On Token Uniqueness. In the main body of this document, in the analysis
of token uniqueness, we eliminated a corner case whereby the token of one user
can be confused with the token of another user; this can occur functionally and
not because of an attacker necessarily.

Indeed, note that there is always non-zero probability that an accidentally
or deliberately corrupted OTAC value might result in a different user being
authenticated as demonstrated here:

a. Assume that one OTACC2 ||C1 is corrupted to become OTAC = C2||C ′1.

b. Then, let u′ be the value dvalue − C ′1. This value u′ may well be valid
UID.

c. Then, by the argument presented in Section 2.4.1, there is a k/n proba-
bility1 that the OTAC token is accepted for u′.

Note that for an attacker who knows the algorithm (which is always the
case), and who, moreover, knows the user-space, it is even easier to perform
step 1 and step 2 above: that is, to adaptively change C1 into C ′1 such that the
resulting OTAC is a valid code for a user u′.

1[0, (n− 1)] is the range of TOTP and k is the number of candidate ti′ used by the server
to allow for some time de-synchronisation between the client and server.
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Appendix B

Specifications
Received/Analysed by UoS
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This document is strictly confidential and is intended only for the person it was issued to. 

swIDch OTAC Algorithm Evaluation by 

University of Surrey 

Registration 

The manner by which the identifiers and secrets are provisioned to the client application is out-

of-scope of the algorithm and it is assumed to be carried out as part of a trusted and secure 

commissioning process during the roll-out of the swIDch solution for a customer hence 

customer specific. There is nothing that can change the interaction of the algorithm. 

We RECOMMEND that all the communications for registration SHOULD take place over a 

secure channel, e.g., Secure Socket Layer/Transport Layer Security (SSL/TLS) [RFC5246] or 

IPsec connections [RFC4301]. 

We provide a reasonable registration process that customers MAY apply to their system. 

 

● OTAC Generator is typically a user’s mobile device where OTAC Client SDK is 

integrated to provide functionalities such as generating registration code or OTAC code. 

● Operating Server is typically the customer’s system which consists of a gateway to 

receive and relay the requests such as registration, and a system to process the 

customer’s business logic. 
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● OTAC Authenticator is typically a server where OTAC Server SDK is integrated, often 

running within the same environment as the customer’s system, hence the customer is 

responsible for operating and maintaining OTAC Authenticator. 

Secret 

Secret (Key) SHALL be chosen at random or using a cryptographically strong pseudorandom 

generator properly seeded with a random value. 

We follow the recommendations in [RFC4086] for all pseudorandom and random number 

generations. The following is an example of such system configurations. 

● Length: 160 bits (recommendation), 128 bits (minimum length) 

● RNG: NIST SP800-90A rev 1 

● Entropy: The length of entropy SHOULD be the same strength as output key length (e.g. 

minimum 128 bits Entropy size). 

We also ensure storing the secrets securely in the OTAC Generator and OTAC Authenticator 

system and, more specifically, encrypting them using tamper-resistant hardware encryption and 

exposing them only when required: for example, the key is decrypted when needed to verify an 

output value from f1 function, and re-encrypted immediately to limit exposure in the RAM to a 

short period of time. 

Note that while we follow the security procedure explained above, the actual implementation to 

achieve the functionality of storing is dependent on the key management system within the 

platforms such as iOS or Android, and is out-of-scope of the algorithm. 

ID (Unique Identifier) 

ID is a unique identifier for a user or entity in a system, and de-identified value to make sure ID 

has no direct referencing to a given user or entity. 

ID MAY be created and allocated as simple incremental values (e.g. 0000,0001,0002,0003…) 

or UUID [ISO/IEC 11578]. 

 

Since ID is a unique value, in conjunction with C1 value in f2, OTAC provides the notion of 

preventing duplicate between user or entity. 
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Generation and Authentication 

Upon successful registration, OTAC Generator has the ability to generate OTAC without any 

prior communication to the server. The generated OTAC is then uni-directionally transmitted to 

terminals such as payment machines or another endpoint where usually the OTAC is routed to 

the customer’s operating server. Note that the definition of terminals varies depending on use 

cases. The customer’s operating server is responsible for delivering the OTAC to OTAC 

Authenticator where the OTAC is validated. The hosting environment of OTAC Generator and 

OTAC Authenticator SHOULD make sure the clock on both environments is synchronized, but 

this is out-of-scope of the algorithm, hence a requirement for the customer. 

We provide a flow that customers MAY wish to apply to their system considering their business 

logic and use case. 

 

 

General OTAC Algorithm 

Notations 

I. C1 represents the output from f1. 

II. C2 represents the output from f2. 

III. K represents a shared secret between client (OTAC Generator) and server (OTAC 

Authenticator); each client has a different and unique secret K. 

IV. T represents a time reference and a time step. 

V. D1 and D2 represent the number of digits; system parameter, a big enough length to 

cover the output of the Spacing function 
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VI. B represents the Base value; system parameter  

VII. U represents a unique identifier. 

Generator 

f1(K, T, D1, B) = Spacing1(Merge1(HASH(K,T) , T) , D1, B) 

Description 

● The primary purpose of f1 function is to produce C1 hence to add randomness to the 

computation of C1 and C2. 

● The current choice of HASH function in f1 is TOTP [RFC6238] and MAY be replaced by 

another choice of HASH function that fulfils the same requirement of RFC6238. 

 

1. hashval = Merge1(HASH(K,T), T) 

a. K and T are passed to the HASH function (HMAC Based as defined in RFC6238) 

in order to produce a TOTP [RFC6238] value and the output value is required to 

be of reasonable length considering user experience and the minimum value to 

be regarded as secure is 6 digits. 

b. Merge1 is a function to combine the output from HASH() and T to produce the 

hashval and the current choice of the operation is addition. As described in the 

associated patent, this is necessary in case TOTP value is duplicated, to ensure 

that the randomness stands still. The reasoning for having the Merge1 function is 

that in case there are duplicate TOTP values at two different time value T, for 

example, two TOTP values happen to be 839123 at two different moments and 

adding different T values to 839123 produces two different values to mitigate the 

situation, hence our patent contains this view. 

c. The length of hashval is a configurable parameter, and the length of hashval 

SHALL have enough space to cover the length of T and TOTP (whichever is 

longer) to support the Merge1 function. For example, if the length of TOTP value 

is 6 digits (the minimum value to be regarded as secure), and the length of T is 

10 digits (e.g. Epoch timestamp), the space of hashval SHALL cover a minimum 

of 10 digits. 

2. C1 = Spacing1(hashval, D1, B) 

a. The Spacing1 is a function to convert hashval to fit in a specific output format 

and size. The Spacing1 function is also important to maximize the numbers of 

codes with the same output size. The values of parameters D1 & B for Spacing1 

function are governed by a set of customer’s requirements and user experience. 
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An example scenario to choose D1 and B depends on use cases, but here’s an 

example setting. 

i. Use case: Payment Card 

ii. OTAC Output Format: Decimal Digits 

iii. OTAC Output Length: 16 digits 

iv. Number of total users: 800k users 

v. The payment card number consists of the Bank Id Number (BIN, first 6 

digits, static), the next 9 digits are the account ID, the last digit is the 

check digit, the next 4 digits are expiry date and the last 3 digits are CVC. 

OTAC consumes the 9 digits (account ID), 4 digits (expiry date) and 3 

digits (CVC).  

vi. Therefore, one setting with one BIN number is B = 10, D2 = 6 and D1 = 

10 

vii. Or another setting with 10 BIN numbers (e.g. each BIN covers 80k users) 

is B=10, D2 = 5 and D1 = 11. 

b. D1 is a system parameter and it determines the final size of C1. Assuming the 

digits of C1 is D1, the Spacing1 function performs to make sure that the output 

value fits in D1.  

c. B is a system parameter and a Base value that determines the representation of 

C1. The typical parameter values are 82, 62, 36 and 10. We RECOMMEND to 

have the highest value for B in order to maximize the probability in the same 

space and the Spacing1 function performs to translate into the chosen Base 

value. One thing to consider is that usability might depend on the choice of the 

Base value therefore the business requirement needs to be determined when 

designing the sensible combination of D1 & B. They output characters are as 

follows. 

i. B=10: digits only 

ii. B=36: digits+[A…Z] 

iii. B=62: digits+[A…Za…z] 

iv. B=82: digits+[A…Za…z]+20 other printable chars 

f2(C1, U, D2, B) = Spacing2(Distancing(U, C1), D2, B) 

Description 

● The primary purpose of f2 function is to add the notion of distancing between U and C1 

as described in the associated patent.  

 

1. dvalue = Distancing(U, C1) 

a. U and C1 are passed to the Distancing function to produce a dvalue. U and C1 

are always over the same domain when it comes to mathematical operation and 

it is to add U and C1.  
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2. C2 = Spacing2(dvalue, D2, B) 

a. The dvalue, D2 and B are passed to the Spacing2 which is a function to convert 

dvalue to fit in a specific output format and size. The Spacing2 function is also 

important to maximize the numbers of codes with the same output size. 

b. D2 is a system parameter and it determines the final size of C2. Assuming the 

digits of C2 is D2, the Spacing2 function performs to make sure that the output 

value fits in D2. 

c. B is a system parameter and a Base value that determines the representation of 

C2. The typical parameter values are 82, 62, 36 and 10. We RECOMMEND to 

have the highest value for B in order to maximize the probability in the same 

space and the Spacing2 function performs to translate into the chosen Base 

value. One thing to consider is that usability might depend on the choice of the 

Base value therefore the business requirement needs to be determined when 

designing the sensible combination of D2 & B. 

 

 

OTAC = Merge2(C1, C2) 

Description 

● The final OTAC is then composed by putting C1 and C2 into the Merge2 function. The 

computational manner of the Merge2 function is C2||C1 currently. 

Authenticator 

The received OTAC is then split into C1 and C2, which gives an opportunity to reveal U by 

reversing the f2 function. Upon successful recovery of U, respectively the OTAC Authenticator 

performs the f1 function to derive a new C1. Upon completion of the computation, the received 

C1 and the newly computed C1 are compared and checked whether they match. If they match, 

OTAC Authenticator returns a successful result to the customer’s system to allow their business 

logic.  
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Payment OTAC Algorithm 

Credit Card number format consists of the following format. 

• BIN (6 digits, fixed number) || the account ID (9 digits) || the check digit (1 digit) || expiry 

date (4 digits) || CVC (3 digits) 

Except for the fixed numbers, such as BIN and check digit, OTAC only utilises 16 digits in total 

comprising 9 digits for the account ID, 4 digits for the expiry date and 3 digits for CVC. 

 

Notations 

I. C1 represents the output from f1. 

II. C2 represents the output from f2. 

III. K represents a shared secret between client (OTAC Generator) and server (OTAC 

Authenticator); each client has a different and unique secret K. 

IV. T represents a time reference and a time step. 

V. D represents the number of digits; system parameter 

VI. B represents the Base value; system parameter 
VII. U represents a unique identifier. 

Generator 

f1(K, T, D1, B) = Spacing1(Merge1(HASH(K,T) , T) , D1, B) 

Description 

● Same as general OTAC except for D1 and B. 

 

1. hashval = Merge1(HASH(K,T), T) 

a. Same as general OTAC 

2. C1 = Spacing1(hashval, D1, B) 

a. Same Spacing1 function as general OTAC 

b. B is 10 

c. D1 is a system parameter and such system settings are suggested as follows in 

the configuration section below and the settings are customer requirements.  

 

 

f2(C1, U, D2, B) = Spacing2(Distancing(U, C1), D2, B) 

Description 

● Same as general OTAC except for D2 and B. 
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1. dvalue = Distancing(U, C1) 

a. same as general OTAC. 

2. C2 = Spacing2(dvalue, D2, B) 

a. Same Spacing2 function as general OTAC 

b. B is 10 

c. D2 is a system parameter and such system settings are suggested as follows in 

the configuration section below and the settings are customer requirements.  

 

 

OTAC = GenerateCardNumber (BIN, C1, C2) 

Description 

• It depends how to fit C1 and C2 into the card format, and this is highly related to the 

configuration settings. 

• One typical example would be the following. 

o BIN || C2 || checksum || C1 

• Checksum is calculated only after the values are all concatenated and the Luhn 

algorithm is used to calculate Checksum. (https://en.wikipedia.org/wiki/Luhn_algorithm) 

Configuration 

We provide two sample configurations as follows and note that they are all system parameters. 

9(the number of users) + 7(the probability) configuration 

● The D of C2 is the first 9 digits: 10^9 

● The D of C1 is the next 7 digits including expiry date (up to 5 years) and CVC : 5 x 12 x 

1000 = 60000 

7(the number of users) + 9(the probability) configuration 

● The D of C2 is the first 7 digits: 10^7 1000000 

● The D of C1 is the next 9 digits including expiry date (up to 5 years) and CVC : 5 x 12 x 

100000 = 6000000 

When such system is configured, we take a through discussion with the customer to make sure 
'dvalue' never exceed 9 digits by considering the total number of users, hence the required 
digits for U and then 'Spacing2' for payment for example converts the ‘dvalue’ into whatever the 
format it needs to be. In the case that C1 is 9 digits, the 'hashval' is 5 digits and the Spacing1 
will transform it to [2 digits of hashval][0-12][21-26][3 digits of hashval] to fit into the payment 
card number format. 
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BIN(6) || C2(7) || C1(first 2 digits) || checksum(1) || C1 (next 4 digits for expiry) || C1(remaining 3 
digits for cvc). 
 
In the payment term, BIN (Bank Identification Number, the first 6 digits of full card number) is a 

static information assigned to identify the institution that issues the card and the key in the 

process of matching transactions to the issuer of the charge card. The institutions may use one 

BIN or multiple BINs to make sure their service is capable of covering all of the users. 

The OTAC configuration needs to be considered taking business aspects into account by 

asking how many users the customer intends to cover, and depending on the answer, the 

probability can be exploited. 

For example, 1/6,000,000 is considered as a strong value for the probability to prove there is 

very little chance of duplicate, then the customer may choose to cover 10,000,000 users for one 

BIN number. If the customer is comfortable with projection to cover an even smaller number of 

users, then perhaps the customer may wish to go with another configuration to enhance the 

probability. 

Therefore, the system parameters need to be configured considering the business aspect. 
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Drone OTAC Algorithm 

The Drone OTAC Algorithm is mostly derived from the General OTAC Algorithm described 

above. The noticeable variation is D and B for the Spacing. 

We have done co-development with a military solution company in Korea and use this to 

elaborate the benefit of OTAC. 

Technical background and current challenge 

● Usually the control commands for drones are grouped from the controller(left) to the 

drone(right) over a protocol called Mavlink. 

 

● Many drones are still constrained from having crypto hardware due to weight, 

performance, battery and cost issues, hence the need for a lightweight solution. 
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● This creates a problem that the channel between the controller and drone is not secured, 

and the command values are static as shown below. 
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Notations 

I. C1 represents the output from f1. 

II. C2 represents the output from f2. 

III. K represents a shared secret between client (OTAC Generator) and server (OTAC 

Authenticator); each client has a different and unique secret K. 

IV. T represents a time reference and a time step. 

V. D represents the number of digits; system parameter 

VI. B represents the Base value; system parameter 
VII. U represents a unique identifier. 

Generator 

f1(K, T, D1, B) = Spacing1(Merge1(HASH(K,T) , T) , D1, B) 

Description 

● Same as general OTAC. 

● One example of D1 and B is described in the configuration section below. 

 

 

f2(C1, U, D2, B) = Spacing2(Distancing(U, C1), D2, B) 

Description 

● Same as general OTAC. 

● One example of D2 and B is described in the configuration section below. 

  

 

 

OTAC = Merge2 (C1, C2) 

Description 

• The final OTAC is then composed by putting C1 and C2 into the Merge2 function. The 

computational manner of the Merge2 function is C2||C1 currently. 
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Configuration 

The configuration for this project is as follows and note that they are all system parameters. 

The project is designed to demonstrate that OTAC creates a dynamic/random code with a given 

ID (command value) on the controller without any connection, and the code is sent to the drone 

where it is identified and the command is revealed. 

Usually the drones are assigned unique IDs, and may have the same or different set of 

command IDs depending on how to configure the system and map drones, but this is out-of-

scope of the algorithm. 

In this project, the IDs used in OTAC are associated with each command values in the range of 

1000-2000. 

4(the number of ID to cover 1000 different command values) + 4(the probability) 

● The D2 is 4 

● The D1 is 4 

● The B of C1 and C2 is 36 (Base 36) 

● U is a unique identifier for each command in the range of 1000 – 2000. 

● Every U has a unique shared secret value K. 

 

The consideration was that only 200 bytes can be carried over RF (Radio Frequency) and the 

controller already occupied 150 bytes. The estimate for OTAC size for each channel is 6~8 

bytes, hence 24~32 bytes for 4 channels, making the total to be about 180 bytes. 
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